Anisotropic Sobolev Capacity with Fractional Order
نویسندگان
چکیده
منابع مشابه
Analysis of Plane Waves in Anisotropic Magneto-Piezothermoelastic Diffusive Body with Fractional Order Derivative
In this paper the propagation of harmonic plane waves in a homogeneous anisotropic magneto-piezothermoelastic diffusive body with fractional order derivative is studied. The governing equations for a homogeneous transversely isotropic body in the context of the theory of thermoelasticity with diffusion given by Sherief et al. [1] are considered as a special case. It is found that three types of...
متن کاملInterpolation, Embeddings and Traces of Anisotropic Fractional Sobolev Spaces with Temporal Weights
We investigate the properties of a class of weighted vector-valued Lp-spaces and the corresponding (an)isotropic Sobolev-Slobodetskii spaces. These spaces arise naturally in the context of maximal Lp-regularity for parabolic initial-boundary value problems. Our main tools are operators with a bounded H∞-calculus, interpolation theory, and operator sums.
متن کاملanalysis of plane waves in anisotropic magneto-piezothermoelastic diffusive body with fractional order derivative
in this paper the propagation of harmonic plane waves in a homogeneous anisotropic magneto-piezothermoelastic diffusive body with fractional order derivative is studied. the governing equations for a homogeneous transversely isotropic body in the context of the theory of thermoelasticity with diffusion given by sherief et al. [1] are considered as a special case. it is found that three types of...
متن کاملA fully anisotropic Sobolev inequality
Let n ≥ 2 and let A : Rn → [0,∞] be any convex function satisfying the following properties: A(0) = 0 and A(ξ) = A(−ξ) for ξ ∈ R; (1.1) for every t > 0, {ξ ∈ R : A(ξ) ≤ t} (1.2) is a compact set whose interior contains 0. Observe that A need not depend on the length |ξ| of ξ nor be the sum of functions of its components ξi, i = 1, . . . , n. The purpose of this note is to exhibit an inequality ...
متن کاملComposition in Fractional Sobolev Spaces
1. Introduction. A classical result about composition in Sobolev spaces asserts that if u ∈ W k,p (Ω)∩L ∞ (Ω) and Φ ∈ C k (R), then Φ • u ∈ W k,p (Ω). Here Ω denotes a smooth bounded domain in R N , k ≥ 1 is an integer and 1 ≤ p < ∞. This result was first proved in [13] with the help of the Gagliardo-Nirenberg inequality [14]. In particular if u ∈ W k,p (Ω) with kp > N and Φ ∈ C k (R) then Φ • ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Journal of Mathematics
سال: 2017
ISSN: 0008-414X,1496-4279
DOI: 10.4153/cjm-2015-060-3